Minmax Regret 1-Sink Location Problems on Dynamic Flow Path Networks with Parametric Weights

نویسندگان

چکیده

This paper addresses the minmax regret 1-sink location problem on dynamic flow path networks with parametric weights. We are given a network consisting of an undirected positive edge lengths, capacities, and nonnegative vertex A can be considered as road, length distance along road weight number people at site. An capacity limits that enter per unit time. consider locating sink in network, to which all evacuate from vertices quickly possible. In our model, each is represented by linear function common parameter t, decision maker who determines does not know value t. formulate under such uncertainty problem. Given t x, cost x sum arrival times for determined The gap between optimal task formulated one find minimizes maximum over For problem, we propose \(O(n^4 2^{\alpha (n)} \alpha (n) \log n)\) time algorithm where n \(\alpha (\cdot )\) inverse Ackermann function. Also special case every has same capacity, show complexity reduced \(O(n^3 n)\).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Regret k-sink Location Problem in Dynamic Path Networks

This paper considers minimax regret 1-sink location problems in dynamic path networks. A dynamic path network consists of an undirected path with positive edge lengths and constant edge capacity and the vertex supply which is nonnegative value, called weight, is unknown but only the interval of weight is known. A particular assignment of weight to each vertex is called a scenario. Under any sce...

متن کامل

Multiple Sink Location Problems in Dynamic Path Networks

This paper considers the k-sink location problem in dynamic path networks. In our model, a dynamic path network consists of an undirected path with positive edge lengths, uniform edge capacity, and positive vertex supplies. Here, each vertex supply corresponds to a set of evacuees. Then, the problem requires to find the optimal location of k sinks in a given path so that each evacuee is sent to...

متن کامل

Minimax Regret Sink Location Problem in Dynamic Tree Networks with Uniform Capacity

This paper addresses the minimax regret sink location problem in dynamic tree networks. In our model, a dynamic tree network consists of an undirected tree with positive edge lengths and uniform edge capacity, and the vertex supply which is a positive value is unknown but only the interval of supply is known. A particular realization of supply to each vertex is called a scenario. Under any scen...

متن کامل

Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights

This paper deals with a general combinatorial optimization problem in which closed intervals and fuzzy intervals model uncertain element weights. The notion of a deviation interval is introduced, which allows us to characterize the optimality and the robustness of solutions and elements. The problem of computing deviation intervals is addressed and some new complexity results in this field are ...

متن کامل

The Minmax Regret Shortest Path Problem with Interval Arc Lengths

This paper considers the shortest path problem on directed acyclic graphs, where the uncertainty of input data (lengths of arcs) is modeled in the form of intervals. In order to handle the interval data the minmax criterion to the regret values is applied, where the original objective function with interval coefficients is transformed into that of finding the least maximum worst-case regret, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-68211-8_5